Total No. of Questions: 8]	200	SEAT No.:	
PB-3901		[Total No. of Pages : 3	

[6262]-166 T.E. (Mechanical)

ARTIFICIAL INTELLIGENCE & MACHINE LEARNING (2019 Pattern) (Semester - II) (302049)

Time: 2½ Hours] [Max. Marks: 70 Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Near Diagrams must be drawn wherever necessary.
- 3) Assume suitable data, if necessary.
- 4) Use of Non-Programmable Scientific Calculator is allowed.
- Q1) a) Is Naive Bayes supervised or unsupervised algorithm? Why? [2]
 - b) Differentiate between clustering and classification. [6]
 - c) Explain how Support Vector Machine works? Explain with neat sketch Hard Margin and Soft Margin. [9]

R

Q2) a) Define following terms of Decision tree.

[2]

- i) Leaf node
- ii) Pruning
- b) How does K-means work?

[6]

c) Use Naive Bayes algorithm to determine whether a red domestic SUV car is a stolen car or not using the following data:

	. /			
Example no.	Colour	Type	Origin	Whether stolen
1	red	sports	domestic	yes
2	red	sports	domestic	no
3	red	sports	domestic	yes
4	yellow	sports	domestic	no
5	yellow	sports	imported	yes
6	yellow	SUV	imported	no
7	yellow	SUV	imported	yes
8	yellow	SUV	domestic	no
9	red	SUV	imported	no
10	red	sports	imported	yes
			\v	

Q 3)	a)	What are four typical problems to be solved using machine learning approach? [6]
	b)	Enlist and explain steps involved in development of classification model. [6]
	c)	Explain use of Confusion matrix in Machine Learning Model with suitable example. OR OR
Q4)	a)	What is hyper parameter tuning? Explain any three hyper parameters tuned in SVM? [6]
	b)	What is training data, labeled data and unlabeled data? What are key steps involved in developing training data? [6]
	c)	Explain with neat sketch K-fold cross-validation mode. [6]
Q 5)		Explain the concept of Reinforcement learning with an example. Also define key terms used in Reinforcement learning. [8]
	b)	Explain Q-learning algorithm with flow diagram. [6]
	c)	The transfer function of neuron on one layer of a neural network is assumed to be of sigmoid form. Evaluate the output of neuron corresponding to input $x=0.62$. How is the nature of sigmoid function? (Justify the answer with plot) [4] OR
Q6)	a)	Explain Convolution Neural Network (CNN) using neat flow diagram. Explain padding and striding in CNN. [8]
	b)	Explain SARSA algorithm for reinforcement learning. [6]
	c)	A neuron with 4 inputs has the weights 1,2,3,4 and bias 0. The activation function is linear, say the function $f(x) = 2x$. If the inputs are 4, 8,5,6 compute the output. Draw a diagram representing the neuron. [4]
Q 7)	a)	Explain human and machine interaction? Explain with any example. [5]
	b)	What is predictive maintenance? Explain different steps in predictive maintenance. [6]
	c)	Explain with suitable example how fault detection is done. [6]
	• • • • • • • • • • • • • • • • • • • •	

- **Q8**) a) Explain different steps in Dynamic system reduction.
 - Explain any one mechanical engineering application where image-based b) classification can be adopted.

[5]

Explain the steps involved in material inspection? How machine learning c)

Explain the steps involved in material inspectance can be implemented in material inspection.

[6262]-166